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Abstract 
 

In this paper, we present a detector-pyramid 
architecture for real-time multi-view face detection. Using 
a coarse to fine strategy, the full view is partitioned into 
finer and finer views. Each face detector in the pyramid 
detects faces of its respective view range. Its training is 
performed by using a new meta booting learning algorithm. 
This results in the first real-time multi-view face detection 
system which runs at 5 frames per second for 320x240 
image sequence. 

 

1. Introduction 
 

Statistics show that approximately 75% of the faces in 
home photos are non-frontal [1], and therefore ability to deal 
with multi-view faces is important for many face-related 
applications. Multi-view face detection has been a 
challenging problem. The challenge is firstly due to large 
amount of variation and complexity brought about by the 
changes in facial appearance, lighting and expression [17]. 
Changes in facial view (pose) further complicate the 
situation because the distribution of multi-view faces in a 
feature space is more dispersed and more complicated than 
that of frontal faces. 

The learning based approach has been most effective for 
face detection. Sung and Poggio [14] divided the frontal face 
image space and non-face image space each into several 
probability clusters. PCA is performed on each cluster so 
that face/non-face classification is performed in terms of 
both the Mahalanobis distance from the cluster center in the 
PCA space and the Euclidean distance from the PCA space 
are used as features. Rowley et al [9] presented a face 
detection system based on retinally connected neural 
networks. The input to the NN is the preprocessed image 
pixel values directly. Post-processing of the neural networks 
are performed by either ANDing/ORing the outputs or using 
an additional neural network to arbitrate between the outputs. 
Osuna el al [5] applied the support vector machines 
algorithm to train an NN to classify face and non-face 
patterns. Yang el al [3] uses a network of linear units. The 
SNoW learning architecture is specifically tailored for 
learning in the presence of a very large number of features.  
 
 
* The work presented in the paper was carried out at 
Microsoft Research Asia. 

 

 
Recently, Viola and Jones [19] propose a very fast 

approach for frontal face detection. Simple Haar-like feature 
are extracted, face/non-face classification is done by using a 
cascade of successively more complex classifiers which are 
trained by using AdaBoost [24] learning algorithm. The 
cascade structure is supported by an argument made in [4] 
that cascading classifiers is a better approach than multi-
expert methods like voting and stacking. 

 Over past years, progress has been made for non-frontal 
faces detection and recognition. Feraud et al [11] adopt the 
view-based representation for face detection, and use an 
array of 5 detectors with each detector responsible for one 
view. Wiskott et al [16] build elastic bunch graph templates 
for multi-view face detection and recognition. Gong and 
colleagues [21] study the trajectories of faces in linear PCA 
feature spaces as they rotate, and use kernel support vector 
machines (SVMs) for multi-pose face detection and pose 
estimation. Huang et al [13] use an SVM to classify three 
facial poses at -33.75, 0, +33.75 degrees. 

To deal with complexity due to multi-view, a natural 
treatment is to divide face images into several subsets 
according to the facial view and model each view subspace 
respectively [2], by which explicit 3D modeling is avoided.  

The system of Schneiderman and Kanade is claimed to 
be the first one in the world for multi-view face detection 
[10]. The algorithm consists of an array of 5 face detectors 
each of which is specialized for a specific pose of face and 
accommodates small amount of variation around the 
designated pose. A detector classifies a sub-window into 
face/non-face based on statistics of products of histograms 
computed from examples of the respective view. The results 
from all the detectors are merged such that they are spatially 
consistent. The detector is claimed to be the first algorithm 
in the world for multi-view face detection. However, it is 
very slow and takes 1 min to work on a 320x240 image over 
only 4 octaves of candidate size [10]. 

In this paper, we present a novel framework for real-time 
multi-view face detection. A detector-pyramid architecture is 
designed to detect multi-view faces efficiently. The detector-
pyramid adopts an integrated strategy of coarse-to-fine view 
decomposition [18,19], and simple-to-complex face/nonface 
classification Viola and Jones [19]; a sub-window is 
processed from the top to bottom of the pyramid by a 
sequence of increasingly more complex face/non-face 
classifiers designed for increasingly finer ranges of facial 
view. The detector-pyramid goes beyond the straightforward 
view decomposition method [2] in that using the coarse-to-
fine and simple-to-complex strategy, a vast number of 



nonface sub-windows can be discarded very quickly with 
very little lose of face sub-windows. This is very important 
for fast face detection because only a tiny proportion of sub-
windows are of faces. 

We devise simple image features for efficient 
face/nonface classification. These features are extensions of 
those used in [19] for frontal face detection in that the 
former is more suitable to cater to non-symmetry of non-
frontal faces.  

Every detector in the pyramid is learned from 
face/nonface examples using a new learning algorithm called 
FloatBoost [22]. FloatBoost incorporates the idea of 
Floating Search [18] into AdaBoost to solve the non-
monotonicity problem encountered in the sequential 
algorithm of AdaBoost. 

While the Viola-Jones detector [19] is the first real-time 
frontal face detector and Schneiderman-Kanade detector is 
the first (non real-time) multi-view face detector, the 
algorithm presented in this paper results in the first real-time 
multi-view face detection system which runs at 5 frames per 
second for 320x240 image sequence on a conventional 700 
MHz Pentium III PC. 

The rest of the paper is organized as follows: Section 2 
introduces the detector-pyramid architecture for multi-view 
face detection. The design and training of individual detector 
are presented in section 3 and 4. Method to arbitrate among 
nine view channels is presented in section 5.Section 6 
provides the experimental results and conclusion is drawn in 
section 7. 
 
2. Detector-Pyramid Architecture 
 

The present multi-view face detection system is 
distinguished from previous systems in its ability to detect 
multi-view faces in real-time. It is designed based on the 
following thoughts: While it is extremely difficult to 
distinguish multi-view faces from non-face images clearly 
using a single classifier, it is less difficult to classify between 
frontal faces and non-faces and also less difficult to do 
between multi-view faces and part of non-faces. Therefore, 
narrowing down the range of view will make face detection 
easier and more accurate for that view. 

On the other hand, a vast number of sub-windows (e.g. 
70,401 square sub-windows can result from the scan of a 
320x240 image, from the size of 20x20 pixels to 240x240 
for the size increment factor of 1.25) result from scan of the 
input image; among these only a tiny proportion (say, up to a 
few dozens) of them are faces. It can save the computation 
tremendously if a sequence of detectors of increasing 
complexity and face/non-face discriminating power are 
applied to quickly discard non-faces at the earliest possible 
stage using the simplest possible features. 

The detector-pyramid architecture (see Figure 1) is 
motivated by the above reasons. It adopts the coarse to fine 
(top-down in the pyramid) strategy [18,19] in that the full 
range of facial view is partitioned into increasingly narrower 
ranges, and thereby the whole face space is partitioned into 
increasingly smaller subspaces. Also it adopts the simple-to-
complex strategy (Viola-Jones detector [19]) in that the 

earlier ones are simpler and so are able to reject a vast 
number of non-face sub-windows q1uickly whereas the ones 
in the later stage are more complex and involved and spend 
more time to scrutinize only a relatively tiny number of 
remaining sub-windows.   

 
 

 
 

Figure 1: Detector-pyramid. 
 
Our current implementation consists of three levels. The 

first level consists of a single detector, responsible for the 
full range of [-90,90] degree (0 degree being the frontal; 
view). There are three detectors in the second level, 
responsible for the three view ranges [-90, -40], [-30,+30], 
[+40,+90], respectively. The third level consists of 9 
detectors of [-90, -80],[-70,-60], …, [60,70], [80,90] degrees. 
Therefore, there are a total of 13 detectors. 

For a sub-window, if it is rejected by detector at the top 
level, it will be seen as non-face region and will not be 
processed by later levels. If it goes through first level, it will 
be processed by second level. If any detector in second level 
classifies it as face, it will be processed by last level, or it 
will be rejected as non-face. There are much more detectors 
on the bottom of our framework, and it help us focus our 
attention on those possible face region, while paying much 
less time on impossible face region. At the last level, each 
detector only dues with 20 degree ranges of view and each 
detector has high detection rate for that view. This pyramid-
like framework makes our system have both high detection 
rate and rapid detection speed for multi-view face detection. 

The full-view detector in the implementation is able to 
reject about 50% of non-face sub-windows scanned in the 
performing stage, while retaining 99% of training face 
examples in the training stage. Only retained sub-windows 
possibly containing faces are further processed in the 
subsequent levels of finer detectors. The results from the 
detectors in the bottom level are merged to make a final 
decision regarding the input sub-window. 

 

3. Design of Individual Detectors 
 
 The high speed and detection rate of the algorithm 
depend not only on the detector-pyramid architecture but 
also individual detector. Each detector classifies a sub-
window into face/non-face. Two types of simple features, 



which are block differences similar to steerable filters, are 
computed as shown in Figure 2. Each such feature has a 
scalar value which can be computed very efficiently from the 
summed-area table [6] or integral image [19]. These features 
are non-symmetrical to cater to nonsymmetrical 
characteristics of non-frontal faces. They have more degrees 
of freedom than those of [19] in their configurations: 6 (x, y, 
delta x, delta y, dx, dy) in the two block features and 7 (x, y, 
delta x, delta y, dx, dx’, dy) in the three block features. 
There are a total number of 102,979 two-block features for a 
sub-window of size 20x20 pixels. There are a total number 
of 188,366 three-block features (with some restrict to their 
freedom). 
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Figure 2: The two types of simple Harr wavelet like 

features defined in a sub-window. The rectangles are of size 
x by y and are at distances of (dx,dy) apart. Each feature 
takes a value calculated by the weighted +-1,2 sum of the 
pixels in the rectangles. 

 
A face/nonface strong classifier is constructed based on a 

number of weak classifiers where a weak classifier performs 
face/non-face classification using a different single feature, 
e.g. by thresholding the scalar value of the feature according 
the face/non-face histograms of the feature. A detector can 
be one or a cascade of such face/nonface strong classifiers, 
as in [19]. 

 

4. Training of Individual Detectors 
 

How to choose a good combination of weak classifiers 
from tens of thousands of features to construct a powerful 
detector is a challenging problem of feature selection [8][15] 
and classifier design. We have devised a new boosting 
algorithm, called FloatBoost [22], for learning face detectors 
for the detector-pyramid. Similar or better performance than 
AdaBoost is achieved with fewer weak classifiers.  

 

    
                           

Figure 3: Mirroring feature. On the left is a feature learned 
for a left view detector. On the right is the corresponding 
feature mirrored for the right view counterpart. 

 

The detectors in the pyramid are trained separately, using 
different training sets. An individual detector is responsible 
for one view, with possible partial overlapping with its 
neighboring detectors. Due to the symmetry of faces, we 
need to train side view detectors for one-side only, and 
mirror the trained models for the other side. For one feature 
used in left-side view, we mirror its structure (See Figure 3) 
to construct a new feature used for right-side view. Each 
left-side view feature is mirrored by this way, and these new 
features are combined to construct right side view detectors. 

 

5.  Arbitrate among Individual Outputs  
 

In our framework, we have nine channels at the last layer; 
each channel represents one facial view. To arbitrate among 
these nine detectors we use some heuristic methods. 

Firstly, we combine the output of some view ranges into 
one class. After combination, nine channels of view are 
converted to five channels (left profile, left half-profile, 
frontal, right half-profile and right profile). For example, we 
combine [ o90− , o60− ] as left half-profile. Then, we 
arbitrate outputs within these five view poses. We use 
Rowly's heuristic method. We clean-up outputs of each 
detector. See figure 4, A is the last output of front face 
channel, and only frontal faces are detected by this channel. 
B is the last output of half-profile channel. This channel in 
fact includes two channels: right half-profile channel and left 
half-profile channel. Some frontal faces will be detected by 
this channel because half-profile detectors will detect part of 
frontal face as half-profile face (See Figure 5-B). C 
represents the last output of profile channel, and this channel 
includes two channels: right profile, left profile too.  
 

A  B 

C  D 
 

 
Figure 4: Output of fontal (A), half-side (B), and full-side (C) 
view channels, and the final result (D) after post-processing.  
 

To arbitrate among five channels, we present a novel 
heuristic method. In practice, we find half-profile detectors 
and profile detectors often detect part of the frontal face as 
half-profile or profile face. So we prescribe that if a 
particular location is identified as a frontal face, then all 
other locations detected by profile or half profile face 
detectors which overlap it are likely to be errors, and can 



therefore be eliminated. Similarly, if a particular location is 
identified as half-profile face, then all other locations 
detected by profile face detectors are eliminated. D is the 
last output arbitrating among five channels (see figure 5). 
We can find that some faces in B (detected by half-profile 
channel) overlap part of faces in A (detected by frontal 
channel). We identify these faces in B which overlaps with 
faces in A as errors, and eliminate them in the last output (in 
D). By the same, half-profile and profile channels have some 
overlaps too, and we eliminate faces detected by profile 
channel, which overlap with faces by half-profile channel. 

 

6. Experimental Results 
 

This section describes the final face detection system 
including training data preparation, training procedure, and 
the performance comparison with previous view-based 
multi-view face detection system. 
 
6.1 Training Data Set 
 

More than 6,000 face samples are collected by cropping 
from various sources (mostly from video). The view is in the 
range of � o90− , o90 ] with o90− representing the left-side 
view and o0  representing the frontal view. A total number 
of about 25,000 multi-view face images are generating from 
the 6,000 samples by artificially shifting or rotation. In our 
system, we partition multi-view face space into smaller and 
smaller (top-down in the pyramid) subspaces of narrower 
view ranges. At the top layer, there is only one detector. So 
all face sample are grouped into one class. At the second 
layer, there are three detectors, and face samples are grouped 
into three view classes (frontal, left-profile and right-profile). 
Face samples labeled with o20− , o10− , o0 , o10 , o20 are 
grouped as frontal faces, those with � o90− , o30− ] are 
grouped as left-profile face and the faces�with � o30 , o90 ] 
are grouped as right-profile faces. At the third layer, there 
are nine detectors, and face samples are grouped into nine 
view classes of [-90, -80], [-70, -60], …, [80,90] degrees. 
 

 

 
 

Figure 5: Multi-view face examples 
 
6.2 Training phase 
  

 There are 13 detectors in our system, but we only need 
train eight detectors. The right view detectors at the second 
and third levels can be constructed by mirroring features 
used in left view detectors. This method saves about half 
training time for our system. These detectors are trained 
separately, using their own training data. Non-face images 

used for training these detectors are collected from 12,000 
images which don’t contain face. 

Every detector can be a cascade of strong classifiers and 
this guarantees high detection speed. At the top level, the 
detector is trained using all the faces from o90−  to o90 . It 
has a cascade of three strong classifiers structure. The 
number of features in these three strong classifiers is 5, 13 
and 20 respectively. It can reject about 50% non-face 
training data, while retaining 99% face train data in training 
stage. 

At second level, there are three detectors, each of which 
is trained to detect part range of the full-view faces. Training 
faces are separated into three classes to train these detectors. 
At this level, each detector has a cascade of six strong 
classifiers structure. In our system, this level can totally 
rejects about 97% non-face training data which go through 
top level, and retain 98% face train data in training stage. 

At bottom level, face training data is separated into nine 
classes. At this level, each detector is a cascade of about 
twenty strong classifiers structure. Each detector has a 
detection rate of about 94%, and achieves a false positive 
rate of about 6104 −× . 

 
6.3 Detection Results 
 

The final detector is scanned across the image at 
multiple scales and locations. Scaling is achieved by scaling 
the detectors themselves, rather than scaling the image. This 
process makes sense because the features can be evaluated at 
any scale with the same cost. We scale the detectors using a 
factor of 1.25. In Figure 4, the image is 320 by 240 pixel 
size. There are a total of 70,401 sub-windows to be verified 
in this image. The full-view detector at the top level needs 
110 ms to process all these sub-windows. About 40% sub-
windows from test image are rejected by this coarse 
classifier, and only 41,114 sub-windows can pass through 
this classifier. At the second level, there are three detectors. 
They totally need 77 ms to process all the rest sub-windows. 
About 97% sub-windows of the 41,114 sub-windows are 
rejected by this level, and only 1298 sub-windows pass 
through this level. At the third level, there are nine detectors. 
They process all these 1298 sub-windows. But they only 
need 15 ms to do it, because most sub-windows are rejected 
at first and second levels. The timing is summarized in Table 
1. 

 
Level First Second  Third Total 
Time 110ms 77ms 15ms 202ms 

 
Table 1: Times needed for each level to run the 320*240 
image.  

   
Because spend 15 ms is needed for the third level, so it 

will not affect the efficiency much of the whole system if we 
partition multi-view face space into smaller subspaces of 
narrower view ranges at the third level. That it to say (now 
we have nine detectors on the third level), if we decompose 
multi-view face space into smaller subspaces (for example: 



19 view ranges), this system will still has high detection 
speed, but the detection rate will probably be increased.   

 
Method View-based Detector-Pyramid 
Time    976ms 202ms 

 
Table 2: Comparison between the view-based and detector-
pyramid architecture in speed for multi-view face detection. 
 

If we had not adopted the pyramid-like framework 
presented in this paper, we can apply all these nine detectors 
at the third level directly on all sub-windows without coarse 
classification at the top and second levels. This method will 
(we call it view-based) cost much time for multi-view face 
detection (see Table 2). 

Our system is tested on CMU profile face test set. This 
test set consists of 208 images with 441 faces of which 347 
were profile views from various news web sites. These 
images were not restricted in terms of subject matter or 
background scenery. They were collected from various news 
web sites. The database can be downloaded at 
http://vasc.ri.cmu.edu/idb/html/face/profile_images/index.ht
ml. We present some results shown in Fig 6. We also 
provide a video clip showing multi-view face detection at 
http://research.microsoft.com/~szli/Demos. 

 
 
 

 
 

   

 
 

Figure 6: Examples of Detection Results 
 
 

7. Conclusions 
 

In this paper, we have presented a detector-pyramid 
architecture for multi-view face detection. Using a coarse-to- 
fine and simple-to-complex scheme, our system solves the 
problem effectively and efficiently by discarding most of 
non-face sub-windows using the simplest possible features at 
the earliest possible stage. This leads to the first real-time 
multi-view face detection system.  

Given this framework demonstrates good performance in 
multi-view face detection, we stress that the underlying 
architecture is fairly general and can be applied to other 
appearance based object detection problem. 
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